ISSN: 2094-0343

A New Results on Fenchel Duality Theorem in Frechet Spaces

Dr Pramod Kumar

Assistant Professor (contract), Department of Mathematics, Katihar Engineering college under Science and Technology, Government of Bihar, Patna

Abstract

The Fenchel Duality Theorem in Frechet Spaces can be developed at many levels and it has a wide variety of important applications to Functional Analysis and Graph Theory .The space B on which the operators acts may be an ordered as Banach Space on the Frechet space.

Keywords

Convex function, Frechet spaces, Frechel duality

Introduction

Kothe and Robertson [1, 10] constructed some example of Fenchel Duality Theorem in Frechet Spaces that Let X and Y be real locally convex space and X* and Y* denote their respective topologies dual. For $M: X \to R \cup \{\infty\}$, the Legendre-Fenchel transform of M, $M^*: X^* \to R \cup \{\infty\}$, is defined by

$$M^* f := \sup_{x \in X} [fx - Mx](f \in X^*)$$

With $N: Y \to R$ $U \{\infty\}$ and $A: X \to Y$ linear and continuous, it is of fundamental importance in convex optimization to know when we can say

$$\inf_{x \in X} [Mx + N Ax] + \min_{g \in Y} [M^*(-A'g) + N^*g = 0] \quad(1)$$

For example, characterizes a solution to the minimum problem

 $\inf_{x \in X} Mx$ subset to $Ax \in c$

Where $B \subset X$ and $C \subset Y$ are non-empty. Here $M: B \to R$ $U \{\infty\}$ and we define $M: X \to R$ $U \{\infty\}$ by setting $Mx := \infty$ for $x \notin B$ and $N = I_c$ where $I_c: Y \to R$ $U \{\infty\}$ is the indicator function of C which is defined by $I_c(y) = 0$ $(y \in C)$ and $I_c(y) := \infty (y \notin C)$.

The Fenchel duality theorem states that the equality

$$\inf_{x \in X} [Mx + Nx] + \min_{f \in X} [M^* f + N^*(f) = 0].$$
 (2)

ISSN: 2094-0343

2326-9865

holds if $X = \mathbb{R}^n$ and if M and N are convex such that there is a point in $D(M) \cap D(N)$ at which M or N is continuous . Here D(M) denotes the effective domain of the function $M: X \to R^n U \{\infty\}$, and is defined by D(M)= $\{x | x \in X, Mx \in R\}$. Also we say M is proper if $D(M) \neq 0$.

Definition(1.1)

Let $M,N:X\to R^nU(\infty)$ be convex function .The inf-convoltuion of M with N at $x\in X$, written $(M\nabla N)(x)$, is defined by

$$(M\nabla N)(x) = \inf[M(x-y) + Ny](x \in X)$$
....(3)

We say that the inf-convolution is exact if, for each $x \in X$, there exist some $y_0 \in X$ such that

$$(M\nabla N)(x) = M(x - y_0) + Ny_0 + Ny_0$$

It is clear, therefore, that if we show

$$(M+N)^*f = (M^*\nabla N^*)(f) (f \in N^*)....(4)$$

And if the inf- convolution in the right hand side of (4) is exact ,then the conclusion n the Fenchel theorem (2) follows by taking f = 0. Then inf-convolution theorem states that (4) holds under the conditions of the Fenchel theorem.

In proving our main results we use the following

Proposition(1.1)

Let X be a barraled space and M ,N:X \rightarrow R U { ∞ } be convex ,proper and lower semicontinuous such that $D(M) \cap \text{int } D(N) \neq 0$.

Then

$$\inf_{x \in X} [Mx + Nx] + \min_{f \in X^*} [M^* f + N^* (-f) = 0] \dots (5)$$

Proposition (1.2)

If
$$\bigcup_{\lambda>0} \lambda(D(L) + B(X)) = Z$$

Then for each $U \in \mathcal{U}$ and $\lambda \in R$, $Q_{U,\lambda} = \{g | g \in Z^*, L^*g \leq \lambda, B^tg \in U^0\}$(7)

Is either empty or $\sigma(Z^*, Z)$ – *compact*.

Proof

Let X be Frechet space and Z be fully barrelled and X^* and Z^* their respective dual spaces. Let $\mathcal U$ be a neighbourhood base at the origin in X consisting of convex ,balanced and absorbing sets. For each $U \subset \mathcal{U}$, let $U^0 \subset X^*$ denote its polar. Let $B: Z \to RU\{\infty\}$ be convex, proper and lower semicontinuous and $B: X \to Z$ be linear and continuous.

For each $\in Z$, there exists $\lambda_0 > 0$, $Z_0 \in D(L)$ and $Z_0 \in D(L)$ and $Z_0 \in X$ such that $Z = \lambda_0 Z_0 + 1$ Bx_0 . Since $U \in \mathcal{U}$ is absorbing, there exist $\mu_0 > 0$ such that $\mu_0 x_0 \in U$. Hence , for each $g \in Q_{U,\lambda}$.

ISSN: 2094-0343 2326-9865

$$< z, g >= \lambda_0 < z_0, g > + < Bx_0, g >$$
 $\leq \lambda_0 [Lz_0 + L^*g] + < x_0, B^tg >$ $\leq \lambda_0 [Lz_0 + \lambda] + \mu_0^{-1} < \mu_0 x_0, B^tg >$ $\leq \lambda_0 [Lz_0 + \lambda] + \mu_0^{-1}$

It follows that $Q_{U,\lambda}$ is $\sigma(Z^*,Z)$ – bounded and hence equi continuous by the

Uniform Boundedness Principle. $Q_{U,\lambda}$ is therefore relatively $\sigma(z^*,z) - is \ compact$.

Since $\sigma(z^*,z)$ – is closed, $Q_{U,\lambda}$ is in fact, $\sigma(Z^*,Z)$ – closed and the result follows

Main Result

If $Z = \bigcup_{\lambda > 0} \lambda(D(L) + B(X))$ is a closed linear subspace of Z(8)

Then $\forall f \in D(LB)^*$

$$(LB)^*f = min(L^*g|g \in Z^*, B^tg = f)$$
....(9)

Proof Step I

We first show to hold under assumption. L.B is clearly convex and lower semi continuous. By assumptions , there exist $z_0 \in D(L)$ and $x_0 \in X$ such that $0 = z_0 + Bx_0$.

Hence L B $(-x_0)$ = L (Bx_0) = $L(z_0)$ < ∞ and LB is proper. It follows from this that D $(LB)^*$ non-empty.

For $f \in D(LB)^*$ define $J: X^* \to R \ U \{\pm \infty\}$ by

$$Jf = \inf\{L^*g | g \in Z^*, B^tg = f\}$$
$$(f \in D(LB)^*$$

Since there exists a $U \in \mathcal{U}$ such that $f \in U^0$ we find that

$$\{g|g \in Z^*\} B'g = f\} \subset \{g|g \in Z^*, B^tg \in U^0\}$$

From this it follows that, for each $\lambda \in R$,

$$\{g|g\in\{Z^*\}L^*g\leq\lambda,B^tg\subset Q_{II,\lambda}\}$$

Where $Q_{U,\lambda}$ is defined as in .Since $B^t: Z^* \to X^*$ is continuous between the $weak^*$ - topologies and L^* is $\sigma(Z^*, Z)$ —lower semicontinuous, we find using propositions that for each $\lambda \in R$,

 $g|g \in \{Z^*\}$ $L^*g \le \lambda$, $B^tg = f\}$ is either empty or $\sigma(Z^*, Z)$ -compact. This allows us to replace "inf" by "min" in the definition of J, where now $J: X^* \to R \ U \{\infty\}$.

Next for each $h \in D(L^*)$

$$J(B^1h) = min\{L^*g|g \in Z^*, B^tg = B^th\} \le L^*h < \infty$$
, which shows that J is proper,

It is easily verified that J is also convex.

2326-9865

We now show that J is $\sigma(X^*, X)$ —lower semi continuous by proving that for each $\lambda \in R$, the sublevel set $S(I; \lambda) = \{f | f \in X^*, If \leq \lambda, \text{ is } \sigma(X^*, X) \text{ closed. Indeed, for each } U \in \mathcal{U} \text{, we find that} \}$ $S(J;\lambda) = \cap U^0 = f | f \in X^*$, $Jf \leq \lambda, f \in U^0 = B^t(Q_{U,\lambda})$ where $Q_{U,\lambda}$ is $\sigma(Z^*,Z)$ —compact. By the $\sigma(Z^*,Z) - \sigma(X^*,X)$ continuity of B^t and the KREIN-SMULIAN theorem it then follows that $S(J;\lambda)$ is, in fact, $\sigma(X^*, X) - closed$.

By the Fenchel-Mreau theorem applied to J, we conclude that $J = J^{**}$ now follows since ,for each $x \in X$,

$$LBx = L^{**}(Bx) = \sup_{y \in z^{*}} [\langle Bx, g \rangle - L^{*}g]$$

$$= \sup_{g \in z^{*}, f \in x^{*}, B^{t}g = f} [\langle x, f \rangle - \inf_{g \in z^{*}, B^{t}g = f} L^{*}g]$$

$$= J^{*}x$$

And so that ,for each $f \in D(LB)^*$

$$(LB)^*f = J^{**}f = Jf = min\{L^*g|g \in Z^*, B^tg = f\}$$

Step II

We can now extend to hold under in a simple and direct way. We achieve this extension as follows: By assumption since $0 \in B(x)$, given $x \in D(L)$ we can find $\lambda_0 > 0$, $y \in D(L)$ and $z \in D(L)$ B(x). Such that $-x = \lambda_0(y + z)$. it follows

$$0 = (1 + \lambda_0)^{-1} x + \lambda_0 (1 + \lambda_0)^{-1} (y + z) \in D(L) + B(x)$$

And hence that $0 \in D(L) \cap B(x)$ by a suitable translation. We deduce from this that D (L),

$$B(X) \subset Z$$
.

Next let $i = Z \rightarrow Z$ be the canonical injection map with $i^t:Z^* \rightarrow Z^*$ denoting its (surjective) adjoint and define $\zeta = L$ o i: $\mathcal{L} \rightarrow RU \{\infty\}$.

Since clearly
$$\underset{\lambda>0}{U} \lambda(D(\mathcal{L}) + B(X)) = \underset{\lambda>0}{U} \lambda(D(L) + B(X)) = \mathcal{L}$$

Step I with Z replaced by \mathcal{L} and L by ζ , gives $\forall f \in D(\mathcal{L}B)^*$

$$(\mathcal{L}B)^* f = \min \{ \mathcal{L}^* h | h \in \mathcal{L}^*, B^t h = f \}$$

It is now easy to see that $\forall f \in D(LB)^*$

$$(LB)^* f = \min \mathcal{L}^* g | g \in z^*, B^t g = f$$

Indeed by using D(L),B(X) $\subset \mathcal{L}$ we find that $(LB)^*f = (LB)^*$

And min
$$\{\mathcal{L}^*h|h\in\mathcal{L}^*, B^th=f\}$$

$$=\min \{\mathcal{L}^*(ig)|g\in z^*, B^t(i^tg=f)\}$$

 $= \min \{ L^*g | g \in Z^*, B^tg = f \}$

Reference

[1] Kothe.G: Topological Vector Spaces, Vol I and II. Springer Verlag berlin, 1969 and 1989

[2]Treves.F: Topological Vector spaces . Distributions and Kernels Academy Press 1987.

[3]Wilansky,A.: Topological Vector space Springer verlag, Berlin 1979.

[4] A.Grothendick: Topological vector spaces .springer Verlag ,Berlin 1964

[5]F.Freniche: Barrelledness of the space of vector valued and simple function, Math. Ann. 267 (1984)

[6]O'Regan. Donal: Topological structure of solutions sets in Frechet projective limit approach *J.Math Anal.Appl.324(2006)*

[7]]. Mujica: Complex Analysis, Functional Analysis and approximation Theory. North Holland *Mathematics studies , 125(1986)*

[8] Horvath. J.: Topological vector space and Distributions Addison Wesley, Massachusets (1966)

[9]I. M.JAMES: Introduction to a Uniform Spaces, London mathematical society Lecturer Note series 144(1990)

[10]Robertson, A.P., and Robertson .W.J. : Topological vector spaces. Cambridge niversity Press. 1964